
Electrostatics

How accurate is Coulomb’s law? After 231 years you would
think the answer to that question would be known. The existence
of quantum electrodynamics suggests that Coulomb’s law is an
approximation. Actually its a rather poor approximation when
working at the Compton wave length of a particle.

In the enclosed paper, which expands on the work on charge
done in our recent book,The Principles of Matter amending
quantum mechanics, www.castinganalysis.com/abookwe demonstrate
how to construct the electrostatic field for an electron. Theeffort
can be verified by examining the corrections to the ionization data
of single electron atoms.
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Abstract.
Quantum mechanics should be able to generate the basic properties of a particle. One of the most basic properties is charge

and the associated electrostatic electric field. Electrostatic force is a fundamental characteristics of a charged fermion and should
have its nature described by the fermion’s structure. To produce the particle properties require two spaces that define both their
dynamics and their base structure. Relativity and the conservation of energy dictate how these two separate spaces are connected
and the differential equations that describe behavior within these twospaces. The main static characteristic of an elementary fermion
are mass and charge. Mass represents a scale measure of the fermion and it appears that charge results from the detailed structure
of the fermion, which must merge into the electric field description of Maxwell. Coulomb’s law is a good approximation forlarge
distances, but it is a poor approximation at dimension on theorder of a particle’s Compton wavelength. The relativisticdescription
of the fermion in its own frame of reference contains the information required for producing the electrostatic field overall space
without a singularity as a source. With this description it is possible to understand the first order correction to the ionization energy
of hydrogen. The role of nuclear effects on ionization energies can now be better defined for nuclei heavier than hydrogen.

Introduction

This work on electrostatics can be traced directly to tryingto understand the limits of the spherical flat bottom potential
problem from quantum mechanics while trying to model the diffusion of a proton in niobium [1]. Understanding how a
proton is restrained and diffuses in niobium is necessary to understand the effects of hydrogen on the superconducting
properties of niobium for improving the efficiency of running accelerator at its design limit. The simplest 3D bound
state problem when examined in the limit of weak binding has aset of three low level solutions. Trying to explain
the existence of these three solutions eventually led to an entirely different way of integrating relativity into quantum
mechanics. At that time we became aware of accelerator measurements at Jefferson Lab of short-range correlation
data generated in the accelerator we were concerned with in terms of hydrogen contamination. This paper continues
that research track and finds some very old experimental dataon ionization measurements as a source for nuclear
properties of a few light nuclei. Ionization data rather than spectroscopic transition data is more revealing of transient
nuclear properties of some stable light nuclei. One of the major research goals at Jefferson Accelerator Laboratory
is to understand the nature of the short range correlation behavior and the approach introduced here will add to that
data. Our efforts are a good argument against the compartmentalization of research between the building and the
use of accelerators because the problem in both areas require all the physics knowledge available to make progress.
Physics is a rather compact subject and there will always be considerable overlap. High energy physics faces a sterility
problem because it is very isolated from of the rest of science [2]. The theories that it has used to layout future research
are highly questionable. To make real progress there must bea consistency in understanding across all energy scales
and that requires not effective field theories but field theories that are accurate across those wide scales, which must
include gravity. The recent relative energy dependent measurements of gravity by using the Compton edge accelerator
data makes a good start on taking on this broader approach to high energy physics [3].

∗J.P. Wallace & M.J. Wallace, Electrostatics, inScience and Technology of Ingot Niboium for Superconducting Radio Frequency Applications

ed. G. Myneni, AIP Conf.Vol 1697, pp 040004-1-14, AIP Melville NY 2015,copyright 2015 American Institute of Physics (some minor changes in notation

were made for clarity and typographical errors were removedfrom the referenced version )



Static Properties

Quantum mechanics has supplied no mechanism for the source of a charged particle’s electric field. Historically this
problem goes back to the debate on quantum mechanics betweenN. Bohr and A. Einstein centered on the statistically
random nature of quantum mechanics. Einstein was searchingfor a realism he felt existed, which the statistical basis
of quantum mechanics might suppress. Whereas, Bohr was convinced that only the measured phenomenon are real
and there was nothing more to be gained at pondering the details behind the statistical basis of quantum mechanics. A
parallel debate between Dirac and Pauli was also never settled about how to represent relativity in a quantum context
[4] [5] concerning an important point about time, which is tied to the original debate between Bohr and Einstein.
These were important arguments and the difficultly was in understanding that time and space are coupled statistically.

Experimental data and the simple experience of working witha quantum object on a large scale [6] [7] was
essential in taking the 1932 arguments of Dirac, which concerned more than time, but how relativity should enter into
quantum mechanics to generate particle properties. The problem at the base of these arguments is whether there was
more than one space in which to apply quantum mechanics. A space to generate properties and a space to compute
dynamics. Why and how should two such different entities exist? The argument for this division came from consider-
ing the very simple model of a spherical potential well acting on a field and asking the question, what is the minimum
potential required to generate a bound state to localize a field? That can be computed if the local interaction is at-
tractive and it has three allowed solutions which generateda scale for the entities. This is the first step in defining a
primitive boson [1]. For a locally repulsive interaction this would describe an elementary feature with properties as-
sociated with a fermion. The scale that is generated is a measure of uncertainty in the description of the original field.
This uncertainty is defined by a single parameter,ǫ, as the scale. But in time there is also an uncertainty generated
that is∆τ = ǫ/c. Once this point was made it was apparent there was enough information to define a space where
a particle generates its properties that is statistically independent from the laboratory frame. This space is called the
self-reference frame. Standard quantum field theories are dynamical theories analogous to classical mechanics. This
new space is not the same kind of dynamical space used in mechanics but it describes the actions on a field which
generate particle properties. Momentum is not a part of thisnew space.

Identifying the particle’s self-reference frame allows a quantum particle to generate its properties, which are
realized by measurement in the laboratory frame. The statistical basis of Bohr is preserved but the real properties that
Einstein wanted are generated from this basis. What was thennecessary was a description of a particle in this new
frame of reference and that is a straight forward construction. The relativistic energy conservation requirement will
hold in both reference frames though it will be altered by what is allowed to be defined in each frame. Principally
mass is not defined as a separate property in the self-reference frame but is generated in that frame so the energy
conservation is transformed.

(E − mc2)(E + mc2) = p2c2 =⇒ E2 = p2c2 (1)

In the self-reference frame equation 1 can be factored into aproduct of two simple dispersion relationE = pc. From
these a separate spatial and time dependent second order differential equations can be constructed by imposing the
disorder parameter for space and time on the particle’s spatial u(r) and timeg(τ) dependent particle descriptions [8]
[9]. A derivation of the resulting differential equations is in the appendix. The product of these individual descriptions
then construct the particle’s state function in the self-reference frame. Experimentally these analytical representations
were confirmed for a massive boson in the previously cited references. But massive bosons are exotic things, whereas
electrons and nucleons are more commonly dealt with. One of the simplest forces is electrostatics and this should be
something that is generated along with charge in the self-reference frame for an electron.

Self-Reference Frame Representation

To generate the structural characteristics of a particle, the particle must be defined in its own frame of reference inde-
pendent of the laboratory frame. There is no analogous transformation between the two frames similar to a Galilean
transformation as the two frames are statistically independent. The simplest way to introduce the relation of the self-
reference frame to the laboratory frame is in Table I that lists properties, characteristic and how they differ. This
particle space allows the elementary fermion to generate anelectrostatics field. The quantization of charge can be de-
rived by considering the allowed transitions that can occurfrom the self-reference frame as a function of the number
of spatial dimensions in the laboratory frame. Boson chargeor the weak charge and charge quantization are derived
from considering these transitions and are discussed in detail in reference [9].



TABLE 1. Self-reference frame dependent features for a free unboundparticle, ref. [9]

Property Description Comment

Lab. Frame Rn with timeR3 + 1
Self-Ref. Frame C with timeC + 1

State Function ψ(r, τ) = u(r)g(τ) defined in self-ref. frame

ǫ random scale variable generates the self-reference frame

γ relative energy γ = E/mc2 γ ≥ 1 or γ ≤ −1 , real
κ inverse scale 1/ǫ κ = mc/~, real for massive particles
ωc frequency ωc = mc2/~ real

r radial variable realr ≥ 0
τ time variable realτ ≥ 0
n dimension rn ∼ Volume

r = 0 center of symmetry a random location in the lab frame
u(r) spatial function complex function, Amp.|u(r)| & Arg. θ

u∗(r)u(r)r2 density function measured for a boson
u∗(r)u(r) U(1) symmetry proportional to electrostatic field

Sign[n,γ] field sign function (−1, γ ≥ 1) or (+1, γ ≤ −1)× n
3

dynamics lab frame only boson⇋ fermion in self-ref. frame

angular momentum lab frame not defined in self-reference frame
mass, charge,E & B lab frame not defined in self-reference frame

gravity lab frame not defined in self-reference frame
Lorentz trans. lab frame not defined in self-reference frame

The differential equations that represent the spatial structuresu(r) and the time dependenceg(τ) in the particle’s
self-reference frame are derived from the factored coordinate independent energy conservation relation in equation 1
[9]. This analysis defines a particle’s locality that differentiates a particle from a field. The only parameters in the
frame of reference of the particles areγ from relativity E = γmc2 andκ = mc/~ the inverse of the Compton scale
for a particle of mass,m, wherec is the speed of light and~ is Planck’s constant. This analysis yields two differential
equations one for space and one in time.

u′′(r) + (
n − 1

r
+ κ{1− iγ})u′(r) − iκ2γu(r) = 0 (2)

The two solutions in 3-dimensions spatial equations are given in equation 3 and 4. These two solutions represent a
boson and fermion which are parametrized in terms of their relative energy|γ| ≥ 1 and the scale of the particle’s core
ǫ = 1/κ.

uboson(r; γ, κ) = Ae−κrU[1 − iγ, 2, (1+ iγ)κr] (3)

u f ermion(r; γ, κ) = Be−κr1F1[1 − iγ, 2, (1+ iγ)κr] (4)

The solution for the fermion function depends on the confluent hypergeometric function1F1 and the boson is described
by the solution containing theU function. The solutions in the self-reference frame for thefermion function have both
the characteristics of a local center of symmetry and the wave characteristics of a field over all space. The wave-
particle duality is built into the description from the beginning in the self-reference frame. For relativity, both a scale
and clock are required and these spatial solutions supply the particle’s scale.



Time Dependence Self-Reference Frame

The time dependent equation for the state function which is also derived from equation 1, has a very simple solution
set.

∂2g
∂τ2
+ (ωc ∓ iω)

∂g
∂τ
∓ iωωcg = 0 (5)

For the equation with,ω = (γ − 1)ωc the positive terms there are two solutions whereωc is the Compton frequency,
see Table 1.

g+(τ) = Ae−i(γ − 1)ωcτ + Be−ωcτ (6)

For the equation with negative terms there are also two solutions.

g−(τ) = Aei(γ − 1)ωcτ + Be−ωcτ (7)

These solutions supply the particles internal clock with the time dependence due to the particles relative kinetic energy.
The time and distance scales are coupled through the particles self-energy. Note that the time dependent version of
these solution for a massless entity have no decay modes and therefore no virtual existence [9].

The spatial and time dependent equations of a particle in theself-reference frame supply both the clock and ruler
required for the laboratory frame and essential for specialrelativity. The time dependent relation’s solution only has
meaning for both solutions ifτ > 0. The decaying solution has to reappear elsewhere, and thatproblem involves
the relative stability of both the fermion and boson states.Dynamics in the self-reference frame is a study in relative
stability as particles can transform into more stable forms. As the elementary boson and fermion are the only two
things that populate the self-reference frame the dynamicsare limited to the relative stability for these two forms.

The representation for the elementary massive fermion and boson allows their antiparticle to be represented
as their complex conjugate. This is equivalent of allowingγ to be replaced by−γ and representing the negative
energy solutions. The spatial density distribution of the particle is supplied by the product,u∗(r)u(r)r2, represents a
measurable property that can be detected.

Electrostatics

How accurate is Coulomb’s law? After 231 years the answer to that question should be known. The existence of
quantum electrodynamics is a detail which suggests that Coulomb’s law is an approximation. The main static charac-
teristics of an elementary fermion are mass and charge. Massrepresents a scale measure of the fermion and it appears
that charge results from the detailed structure of the fermion, which must merge into the electric field description
of Maxwell. If Coulomb’s law is not accurate at the particle’s characteristic scale, this is a major problem for any
understanding of nuclear structure.

The division between electrostatics and electrodynamics is not one of semantics, it is a major division of two
very distinctly different mechanisms that result in measurable forces. Electrodynamics is understood a little better than
electrostatics in terms of its foundation. There is a separation that Michael Faraday pointed out in the mid nineteenth
century and has really not been explained any better since that time [10]. The current way to describe electrostatics
is to invoke a virtual photon [11]. This appears to be an unnecessary complication to describe a contact interaction.
Attempts to get around this problem with two photon exchange[12] also have not captured the physics required to
generate the electrostatic field.

To explore the idea of what produces the static electric fieldit is useful to plot the product function for a stable
fermion in the self-reference frameψ∗ψ, which reduces tou∗(r)u(r) that is time independent. For the fermion it was
noticed that this function away from the center of symmetry falls off as 1/r2. This is identical to the fall off in the
static electric field in the laboratory frame for an electron. Since charge does not alter the curvature of the laboratory
frame and the field that it generated might be associated directly with the productu∗(r)u(r) where its symmetry is
determined from the restriction to a radial dependence.

The spatial portion of the fermion state function in three dimensions that will be used to generate the electric
field and potential is:

u(r) = Ae−κr1F1[1 − iγ, 2, (1+ iγ)κr] (8)



FIGURE 1. Electric Field Comparison: The 1/r2 fall off in the fermion, u∗u function at large distances is characteristic of
the electric field from a point charge. Whereǫ, epsilon, is inversely proportional to mass withǫ = ~/mc and for the electron
it is approximately 3.86× 10−13 meters.

The trial function describing the spatial dependence of theelectrostatic electric field is:

E(r) =
e

4πǫo
u∗(r)u(r) r̂ (9)

which in the limit asr → ∞ the normalization constant can be computed with a field dependence is 1/r2 using the
series expansion for1F1 at large arguments [14], whereΓ is the gamma function.

lim
r→∞

AA∗e−2κr
1F1(r)1F∗1(r) =

AA∗

Γ[1 − iγ]Γ[1 + iγ](1 + γ2)e−2γ ArcTan(γ)κ2
×

1
r2
=

1
r2

(10)

This allows settingA∗A equal to the denominatorΓ[1− iγ]Γ[1 + iγ](1+ γ2)e−2γ ArcTan(γ)κ2 to normalize the result to a
simple 1/r2 in equation 10 then the electric field and potential are determined.

E(r) =
e

4πǫo
Γ[1 − iγ]Γ[1 + iγ](1 + γ2)e−2γ ArcTan(γ)κ2e−2κr

1F1[1 − iγ, 2, (1+ iγ)κr]1F1[1 + iγ, 2, (1− iγ)κr] r̂ (11)

v(r) =
∫ r

∞
u∗(r′)u(r′)dr′ =

∫ r

∞
E(r′) • dr ′ (12)

The validity ofv(r) potential can be explored by using the function in computing the matrix elements between
states of the hydrogen atom when the 1/r point charge electrostatic potential is subtracted. This difference in the
potentials will be represented asδV in the case of atomic hydrogen.

δV(r) = − e2

4πǫo
{1
r
− v(r)} (13)



FIGURE 2. Electric Field u∗f (r, γ)u f (r, γ) comparison as a function of relative energy,γ. The contraction of the field occurs
with increasing γ.

This is not a small potential change because of the removal ofthe singularity at the origin, but it is restricted to a
small volume which lessens its impact on atomic properties but not on nuclear properties.

Nuclear Potentials

To improve the relevance of the calculation because of the charge radius problem [13] requires defining a potential for
the nuclear charges in terms ofu(r) for the charged nucleon. To differentiate between the different potential sources:
electron, proton and muon the functionue(r), up(r) anduµ(r) are used respectively. The potential then becomes:

vi(r) =
∫ r

∞
u∗i (r

′)ui(r′)dr′ where i = e, p, or µ (14)

Then the error potential for hydrogen like atom, proton-muon or positronium can be computed the particle’s potential.

δVi− j(r) =
e2

4πǫo
{vi(r) − v j(r)} (15)

These error potentials are useful in evaluating the magnitude of the contribution for correcting the point charge
nuclear potentials.

Charge Density

The charge distribution can also be defined from the electricfield. A trial definition for the electric field,E(r) is:

E(r) =
e

4πǫo
u∗(r)g∗(τ)u(r)g(τ)̂r =

e
4πǫo

u∗(r)u(r)̂r (16)

Using Gauss’s law the charge density can be computed.

∇ • E =
ρ(r)
ǫo

(17)

ρ(r, γ) =
e

4πr2

∂

∂r
{r2u∗(r, γ)u(r, γ)} (18)



FIGURE 3. The 1/r fall off in the fermion function at large scale shows the same behavior as that of a point charge. At short
distances the function goes to a terminal finite value. This implies that the electrostatic interaction is a contact interaction
between charges over their volume. The contact is that of thecombined fields that determine the local energy density and
its resulting action on the interacting particles center ofsymmetry producing a net force.

ρ(r, γ) =
e

4π
{2
r

u∗u + u∗
′
u + u∗u′} (19)

The charge density is shown in Figure 4. Having the charge andthe electric field directly generated from the particle’s
density function, which is distributed over spaces, eliminates the need for virtual photon as there can be a contact
interaction between neighboring fields removing the need for an intermediate agent.

The charge density is localize to a small volume unlike the particle density,u(r)∗u(r)r2, which can be spread
over all space. The total charge can be examined by electromagnetic scattering, but the small volume over which it is
defined limits the information that can be acquired in any single experiment. The errors in high energy measurements
will be large compared to the resolution required to map the structure. It is using low energy experiments that will
yield the more accurate data about the fermion structure.

First Order Corrections & Data

Even though the proposed particle’s derived electric field removes a singularity in the self-reference frame for charge,
the bulk of the charge is limited to a small volume. The most accurate method to determine the impact of the distributed
charge to the atomic hydrogen energy levels is to solve the Schrödinger equation with the correct potential by replacing
the 1/r potential with one dependent on the fermion state function,u(r) as it determinesV(r) from equation 12.

− ~
2

2m
∇2φ + V(r)φ = Eφ (20)

It is not apparent how to reduce this equation to an analytical solution. Because the changes in potential are localized
about the origin on a scale much less than that of the Bohr radius it is easier to compute the first order perturbation



FIGURE 4. Charge Density: The charge density plotted asρ(r)r2 as computed in equation 19. The radial coordinate is in
units of ǫ where ǫ = 1/κ and γ = 1.

correction from the Schrödinger equation using the standard proton-electron point charge electrostatic approximation,
−e2/4πǫor as the reference state.

It is possible to test the perturbation potential with data not only for the hydrogen atom, but also with hydrogen
like single electron ions whereZ > 1. The first order perturbation correction,δV, of a quantized energy level,δEnl is
the integral.

δEnl =

∫ ∞

0
φ∗nlφnlδV(r)r2dr (21)

WhereEo
nl ∼ −Z2/n2 with n in this relation being the principal quantum number (1,2, . .), l being the angular

momentum quantum numbers (0,1,2, . . ), which are the eigenvalues using a strict 1/r potential.

Enl = Eo
nl + δEnl +

∑
{ S econd Order Terms } (22)

The integrals that are going to show the greatest values are those that have the maximum asr → 0 which are theS
states and in particular the1S state. Computation of the first order correction of the1S state is shown in Table II where
γ = 1.

For an experimental reference one electron atoms and ions measured ionization energies will be used rather
than dealing with complex problem of dynamic polarizability in a radiative transition that will affect the measured
difference between energy levels.

Enl = Eo
nl + δEnl −

1
2
αE2 +

∑
{ S econd Order Terms } (23)

The dynamic polarization term that is schematically included in equation 23 as−αE2/2 will try to cancel the first
order correctionsδEnl in spectroscopic measurements but not in electron scattering experiments measuring ionization
energies where the polarization is strongly suppressed.



TABLE 2. Matrix elements for hydrogen
with the corrected potential for δV(r) ∼∫ r

∞ u∗udr′ − 1/r. 10−21 joules = .624×10−3 eV

Matrix computed joules
Element × 10−21

< 1S | δV | 1S > 1.137269
< 2S | δV | 2S > .1421634
< 3S | δV | 3S > .04212271
< 4S | δV | 4S > .01777055

< 2P | δV | 2P > -.000004361675
< 3P | δV | 3P > -.000001399561
< 4P | δV | 4P > -.0000006062336

< 1S | δV | 2S > .4020936
< 1S | δV | 2P > .001247904

< 2S | δV | 2P > .0004432168

< 2S | δV | 3S > .07738417
< 2S | δV | 3P > .0002626220
< 2S | δV | 3D > -.0000001834999

< 2P | δV | 3S > .0002413868
< 2P | δV | 3P > -.000002442469
< 2P | δV | 3D > -.0000003872372

Atomic Ionization Energies

The largest correction is for the1S state that is on the order of 10−3 eV, which is a small correction, but easily mea-
sured. The question becomes how do you measure a property of aparticle imposed from its self-reference frame and
measured in the laboratory frame? In the laboratory frame the electron is taken as a point charge and it is accurately
modeled for spectroscopic experiments for radiative transitions. A radiation field finds an electron through the elec-
tron’s charge. The electron’s charge is distributed over a compact volume with spherical symmetry so that the total
charge can be taken as acting at its center of symmetry. Therefore, the point charge description can be used as a
description as long as the electromagnetic field does not probe the core of the fermion. This probing is inhibited by
the dynamic reaction of electrons to the field. A radiative interaction suppresses details of the structural characteristic
of the fermion and its first orderδEnl interaction with the proton. The electron and proton make a simple two body
problem and a radiation field would alter that quiescent state by polarizing the atom [16]. In order to detect the first
order corrections due to the fermion structure a less invasive technique is required and that is to use another electron
to scatter the bound electron out of the1S state and measure the ionization energy. A 14 eV electron is moving at
∼ .01c will have an interaction time of∼ 10−17 seconds, which would be about 1% of the time required for the equiv-
alent radiative transition. The incident electron will ionize the atom. This will lead to extractingδE10 as the difference
between the computed 1S level of−Ryberg × {reduced mass correction} Z2/n2 and the measured ionization energy
as shown in Table 3

Ionization energy determination is an electrostatic scattering that triggers the removal of the final1S electron.
Ionization is not a process that requires the generation of aphoton to liberate an electron. The experimental data
is collected by a radiation-less scattering process. Thereis no large scale dynamic electric field polarizing the atom
prior to ionization except from the incident electron. The point that was made about electrostatic interaction being a
contact interaction differentiates the ionization data from the spectroscopic datathat requires and external dynamic
field that will polarize the atom. Polarizability only becomes important when there is a distribution of both positive
and negative charges spread over a volume. In Table 3 the firstorder correction computed for the1S state is slightly
less than the measured ionization energy of hydrogen by∼ 2%. This gives some support to the idea that the potential
is not a singular 1/r potential in the vicinity of the electron’s core.



TABLE 3. Comparison of the computed first order correction δE10 to the dif-
ference between hydrogen 1S state ionization energy and thestandard 1S level.
The effect of the additional neutron in deuterium reduces the measure first
order correction to the 1S state significantly.Experimental data ref. [15].

Computed 1S Measured Computed exp./ δE10

Isotope Eo
10 Correction δE10

×10−21joules ×10−21joules ×10−21joules %
1H 2178.68640 1.12447 1.137269 99%
2H 2178.68640 .985 1.137269 87%

Relativistic Effects

The first order energy change of the1S state dependent on,T , the mean kinetic electron energy can be estimated
by the Virial theorem from the energy of the state asT = .5|V | whereV is the depth of its potential well. This
would pushγ → 1.00001 and yield a very small increase in the computedδE10 of .0000403× 10−21 joules. These
relativistic corrections for the electron are small untilZ becomes much larger. As the electrostatic interaction is a
contact interaction, there is no inhibition about interacting with a fraction charge components.

Deuterium

The measured correction of the ionization energy for deuterium is very different from the proton. The correction is
reduced by 14% from the proton’s value at.985×10−21 joules, which may indicate a very active three-body interaction
between the proton-neutron-electron if the experimental data is accurate. This is different than a single proton and may
indicate a contribution from the active short-range correlation data found for neutron-proton pair [17]. The short-range
nuclear correlation activity is on a time scale much shorterthan 10−17 seconds, which may contribute to the increased
binding of the1S electron to the deuterium nucleus as compared to hydrogen. This increased binding cannot be
attributed to a relativistic effect.

1S Corrections for Z > 1

The corrections to the1S state that is extracted through the ionization energy are interesting for two reasons. First it
will be the largest correction to the energy eigenvalue because this state has the greatest overlap at the nucleus and
secondly the nuclear charge can be varied by just going up theperiodic table. Schematically the Schrödinger equation
can be written in a charge dependent form as shown in equation24, whereZ is the net nuclear charge.

Ĥ(Z)ψ1S (Z) = E(Z)ψ1S (Z) (24)

The1S solutionψ1S (Z) can actually be made to represent a product of a set of singlenucleon-charge interactions.

ψ1S (Z) ∼ e−Zr = e−r × e−r × e−r . . . Z times (25)

Where the lumpedZ first order energy correction is:

δE(Z) =< ψ1S (Z)|δV |ψ1S (Z) > (26)

This lumped solution assumes the nucleus is a single point charge, which is a poor assumption on the time scale
that would affectδE10. The solution can be altered to reflect the individual chargebased couplings by factoring. This is
closer to the physical reality required to understand the nuclear ground state which is coupled to a single 1S electron.
The ground state dynamics of each nuclear charge must be accounted for in the electron’s energy. Dynamic effects in
and between the nucleons cannot be ignored because their contribution may not average to zero. The nucleus cannot
be viewed as identical particles because their dynamics differentiates the individual interactions with the electron.

Writing out the matrix element forZ > 1 shows how the first order corrections end up as a sum of individual pair-
wise electron-nucleon interactions rather than a bulk interaction with the entire nuclear charge. This differentiation is
forced because all protons are no longer identical as they will be transforming because of their short-range correlations.
The first order energy corrections is then a sum over the individual nuclear charges.



TABLE 4. Computed first order energy correction
to the 1S state due to the electron charge radius. For
Z greater than 1 the correction to the1S state show
a weakening bond where as the experimental data
shows a strengthening of the bond. The Schrödinger
equation solution treats a simple lumped potential
only dependent upZ. Whereas, the binding appears
to be a set of individual couplings to the charges of
the separate nucleons. Experimental data from ref.
[15].

experimental computed
Z elements difference δE10(Z)

joules10−21 joules 10−21

1 1H 1.12447 1.137269
2H .985 1.137269

2 4He -4.2 17.81

3 6Li & 7Li -3.5 88.19
4 9Be -12.1 272.5
5 10B & 11B -12.5 650.4

δV =
1
Z

Z∑

i

δVi =
1
Z

Z∑

i

(
1
ri
−
∫ ri

∞
u∗(r′i )u(r′i )dr′i ) (27)

δEnl(i) =< φi|δVi|φi > (28)

Where:

δEnl = < φ1φ2 . . . φZ |δV |φ1φ2 . .. φz > =
1
Z

Z∑

i

< φi|δVi|φi > =
1
Z

Z∑

i

δEnl(i) (29)

This is a very different result than taking a single charge Z and computing a first order corrections. This sum will
have terms that are much reduced from a lumped calculation. Experimentally the numbers are found in Table 4 and
have more in common with the single proton corrections of equation 29 rather than treating the nucleus as a lumped
Z charge found in column 4 of Table 4. The minimum features thatmust be added to the potential terms in the
calculations are the nuclear charge distribution and the polarization of that charge.

There is a great deal of physics buried in trying to understand the deviations of the ionization energies from the
1S state as a function of nuclear charge, particularly the negative value of the corrections asZ increases beyond 1.

Discussion

To test the deduction that an elementary fermion produces anelectrostatic field,u∗u ⇒ |E| rather than a simple 1/r2

field imposes two constraints on time and space. For an electron’s field the effects in space are on a scale of∼ 10−13

meters or less. The constraint on time to measure the effect requires a time scale which does not disturb the bound
system by polarizing the atom or ion. This eliminates using radiative transitions for examining a bound state such
as the hydrogen atom. The ability of a quiescent bound electron state to be measurably polarized by nuclear charge
dynamics appears to be easily detected and surprisingly large.

There are two different categories of nuclei being examined: the proton and all other nucleons which have more
than one component. The ionization energy difference between hydrogen and deuterium is a major piece of data on the
participation of the electron in transient nuclear dynamics. This difference is not small and considering the minuscule
volumetric overlap, the change in ionization energy for deuterium is large. No simple corrections have been found to
account for this shift that increased the binding.



The question of how to reduceδE10(Z) to increase the binding energy of the state looks to be a property of
the nucleus. There is a small 1% difference of 2.432× 10−23 joules for the 1S state of the hydrogen atom between
the computed first order correction and the measured data. The effect for deuterium is much greater with a 18%
reduction from experiment to computation. There is no change in the net charge between the two case but there is a
change in the available electrostatic charge that can be polarized in the nucleus. For the three elements above helium
the contributions become negative. It appears that during the short range correlation periods within the nucleus very
strong local fields are generated that produces a polarization term affecting the1S electron:−αnE2

n/2, which is capable
of dominating the first order correctionδE10. Where bothEn andαn are features of the nuclear short range correlation
process andαn is proportional to the active nuclear volume. This effect becomes more predominant as the nucleon
count increases.

We have tried to avoid the assumptions and problems of considering radiative transitions studied in quantum
electrodynamics. The radiative transition is a much more complex process than the threshold ionization experiment.
By introducing a different potential any future perturbation calculation will have to propagate this change through
to computing the radiative corrections. Its is not easy to say what will result for the corrections, but they should be
significant.

Appendix

Differential Equations in Self-Reference Frame

Starting in the self-reference frame with the conservationof energy relation:

E2 = p2c2 =⇒ (±E)(±E) = (pc)(pc) (30)

Factoring the two equations and replacing terms with their associated operators two differential equations result with
a dependence in time and space.

±i~c∇u(x) = Eu(x) (31)

∓c~kg(τ) = ∓~ωg(τ) = i~
∂g(τ)
∂τ

(32)

The scale of uncertainty in space,ǫ, enters the spatial equation as a random offset that is greater than zero. In the
spatial differential equation becomes a second order differential equation.

u(x)→ u(x + ǫ) (33)

u(x + ǫ) = u(x) + ǫu′(x) (34)

∇u(x + ǫ) = ∇u(x) + ǫ∆u(x) (35)

{∇u(x)}r →
∂u(r)
∂r
= u′(r) (36)

{∆u(x)}r =
∂2u(r)
∂r2

+
n − 1

r
∂u(r)
∂r
= u′′(r) +

n − 1
r

u′(r) (37)

u′′(r) + (
n − 1

r
+ κ{1− iγ})u′(r) − iκ2γu(r) = 0 (38)



Time Dependence

Similarly in the first order time dependent equation the uncertainty in time enters as∆τ = ǫ/c.

g(τ + ∆τ) = g(τ) + ∆τ
∂g(τ)
∂τ
+ . . (39)

∂g(τ + ∆τ)
∂τ

=
∂g(τ)
∂τ
+ ∆τ

∂2g(τ)
∂τ2

+ . . (40)

±iω(g(τ) + ∆τ
∂g(τ)
∂τ

) =
∂g(τ)
∂τ
+ ∆τ

∂2g(τ)
∂τ2

(41)

∂2g
∂τ2
+ (ωc ∓ iω)

∂g
∂τ
∓ iωωcg = 0 (42)

Numerical Integration

The properties of1F1[a, b, r] can be expressed in the following terms:

1F1[a, b, z] = 1+
az
b
+

(a)2z2

(b)22!
. . . . +

(a)nzn

(b)nn!
+ . . . (43)

where (a)o = 1 and :

(a)n = a(a + 1)(a + 2) . . .(a + n − 1) (44)

In the case of three dimensions whenb=2 anda = 1− iγ with z = (1+ iγ)κr the series can be simplified.

ez = 1+ z +
z2

2!
+

z3

3!
+ . . . . (45)

1F1[1 − iγ, 2, z] = 1+ e−iatan(γ)z + e−i(atan(γ)+atan(γ/2)) z2

2!
+ . . . . . (46)

Where the series has form of the series forez with eachn term being multiplied bygn

gn = e−i
∑n

i=1 atan( γn ) (47)

Whenγ → 1 the result is just a rotated version of theez series. The series for1F1 looks like it can be treated as inner
products of two infinitely long vectors where the modulationof the base vector represented by the series forez is
multiplied by a vector generated fromgn.

Care has to be taken with1F1 function in numerical calculation [18]. The series expansions for small and large
arguments of the1F1 functions from ref. [14] were computed to a minimum of 12 place precision. The transition point
|z| = 25

√
2 was selected between the positive and negative power series in z. TheΓ functions were expanded in a

power series of eight terms using the poly-Γ functions at the fixed point 1+ i. The potential differences are computed
by integration in two stages fromǫ× 5×107 taken as infinity toǫ× 104 then continuing to a point belowǫ× 104 where
the value is required. The upper integral is done in 5× 107 steps. The integrals for the matrix elements are performed
from 0 toǫ × 104 in 5×107 steps. The bulk of the contributions to the matrix elements are at radial distances less than
10ǫ where the potential deviates most from Coulomb’s law.

AcknowledgmentsDoug Higinbotham, Glenn Westphal and Prof. Patrick Cahill for their discussion and Eric Gorton.



REFERENCES

[1] J.P. Wallace, Proton in SRF niobium 205-335 (SSTIN 10 AIP Conf. Proc. vol. 1352 ed. G. Myneni et al.,
AIP, Melville NY, 2011 )

[2] R. V. Noorden, Interdisciplinary Research by the Numbers,Nature 525306 (2015)
[3] T. Kalaydzhyan, Testing General Relativity on Accelerators,arXiv:1506.01963v3 [physics.gen-ph] (2015)
[4] P.A.M. Dirac, Relativistic Quantum Mechanics,Proc. Roy. Soc. A 136, 453-461 (1932)
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History

After completing this paper it was realized this is not the first time this partic-
ular problem was seen. At the end of the 1966 academic year JPWstarted work-
ing in the Columbia Radiation Laboratory for a group run by P.Kusch. At this
time I.I. Rabi was teaching his last course and retiring. C. Towens was moving to
Berkeley and in Towen’s laboratory room P. Kusch and P. Cahill were changing
course from the normal spectroscopic measurement and beam experiments that
P. Kusch was involved with since 1938 to start doing ionization and dissociation
measurements. These were techniques he had learned as a research assistant at the
University of Minnesota in the years 1935-1937. The precision radiative transition
measurement to determine the anomalous magnetic moment of the electron and
other deviations in transition spectra were at that time only analyzed by using the
tools of quantum electrodynamics and Prof. Kusch was uncomfortable with this
type of analysis. His preferred analysis technique which used a closed form solu-
tions with the minimum of assumptions that could be experimentally constructed
and then the results could be compared. Unfortunately, political events intervened.
The student riots in the spring of 1968 started a series of events that led P. Kusch
into the administration of the university. A number of key experimental physicists
also departed at this time. Then after a few years of administrative duties he moved
to Texas and the ionization research was never restarted.

I suspect that P. Kusch was well aware of the unexplained offset in the ion-
ization energy for 1S hydrogen and this large discrepancy was not the subject of
much theoretical interest. However, as a student after building components for
the low energy electron gun to be used for the ionization workI was urged to
try a standard quantum mechanical analysis on the ionization problem because it
should yield some interesting results without having to resort to the use of higher
order perturbation analysis required for quantum electrodynamics. From the va-
riety of their previous work with the lithium isotopes one oftheir aims was to
gain more information about the nucleus and its active potentials. A cleaner and
simply experimental and theoretical technique were what they were looking for
in obtaining data about the nucleus. The path to this end had go back even fur-
ther in time to 1932-34 where quantum mechanics failed to incorporate a general
relativistic basis so the electron’s potential could be generated. In both instances
political forces swamped the technical efforts.
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