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How accurate is Coulomb’s law? After 231 years you would
think the answer to that question would be known. The ext&en
of quantum electrodynamics suggests that Coulomb’s lamis a
approximation. Actually its a rather poor approximationenh
working at the Compton wave length of a particle.

In the enclosed paper, which expands on the work on charge
done in our recent bookThe Principles of Matter amending
guantum mechanics, www.castinganalysis.cofmbookwe demonstrate
how to construct the electrostatic field for an electron. @ffiert
can be verified by examining the corrections to the ionizadiata
of single electron atoms.
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Abstract.

Quantum mechanics should be able to generate the basicfespge a particle. One of the most basic properties is aharg
and the associated electrostatic electric field. Eleditimstorce is a fundamental characteristics of a chargediter and should
have its nature described by the fermion’s structure. Talyee the particle properties require two spaces that defitretheir
dynamics and their base structure. Relativity and the cwaten of energy dictate how these two separate spaceanected
and the diferential equations that describe behavior within thesesprames. The main static characteristic of an elementanjder
are mass and charge. Mass represents a scale measure ofrtios fend it appears that charge results from the detaitedtsre
of the fermion, which must merge into the electric field dggtn of Maxwell. Coulomb’s law is a good approximation farge
distances, but it is a poor approximation at dimension orotHer of a particle’s Compton wavelength. The relativigéscription
of the fermion in its own frame of reference contains the rinfation required for producing the electrostatic field catispace
without a singularity as a source. With this descriptiors ipossible to understand the first order correction to thieadion energy
of hydrogen. The role of nucleaffects on ionization energies can now be better defined foenbehvier than hydrogen.

Introduction

This work on electrostatics can be traced directly to tryongnderstand the limits of the spherical flat bottom po&nti
problem from quantum mechanics while trying to model thffudion of a proton in niobium [1]. Understanding how a
proton is restrained andflises in niobium is necessary to understand ffexts of hydrogen on the superconducting
properties of niobium for improving thefeciency of running accelerator at its design limit. The siesI3D bound
state problem when examined in the limit of weak binding hastaof three low level solutions. Trying to explain
the existence of these three solutions eventually led tonirey different way of integrating relativity into quantum
mechanics. At that time we became aware of accelerator mexasuts at Xéerson Lab of short-range correlation
data generated in the accelerator we were concerned wignnmstof hydrogen contamination. This paper continues
that research track and finds some very old experimentalaaianization measurements as a source for nuclear
properties of a few light nuclei. lonization data rathentlspectroscopic transition data is more revealing of teartsi
nuclear properties of some stable light nuclei. One of thfomasearch goals at fferson Accelerator Laboratory

is to understand the nature of the short range correlatibawer and the approach introduced here will add to that
data. Our €orts are a good argument against the compartmentalizatioesearch between the building and the
use of accelerators because the problem in both areaseeuihe physics knowledge available to make progress.
Physics is a rather compact subject and there will alway®hsiderable overlap. High energy physics faces a sterility
problem because it is very isolated from of the rest of s@d8t The theories that it has used to layout future research
are highly questionable. To make real progress there mustdoasistency in understanding across all energy scales
and that requires noffective field theories but field theories that are accuratesscthose wide scales, which must
include gravity. The recent relative energy dependent oreasents of gravity by using the Compton edge accelerator
data makes a good start on taking on this broader approadgh@hergy physics [3].

*J.P. Wallace & M.J. Wallace, Electrostatics, 8tience and Technology of Ingot Niboium for Superconducting Radio Frequency Applications
ed. G. Myneni, AIP ConfVol 1697, pp 040004-1-14, AIP Melville NY 2015&0pyright 2015 American Institute of Physics (some mina@rges in notation
were made for clarity and typographical errors were remdrad the referenced version )



Static Properties

Quantum mechanics has supplied no mechanism for the soliaceharged particle’s electric field. Historically this
problem goes back to the debate on quantum mechanics belv&mir and A. Einstein centered on the statistically
random nature of quantum mechanics. Einstein was searfinifagrealism he felt existed, which the statistical basis
of quantum mechanics might suppress. Whereas, Bohr wasnceahvthat only the measured phenomenon are real
and there was nothing more to be gained at pondering thdsle&diind the statistical basis of quantum mechanics. A
parallel debate between Dirac and Pauli was also neveedettlout how to represent relativity in a quantum context
[4] [5] concerning an important point about time, which isdito the original debate between Bohr and Einstein.
These were important arguments and thi&daliltly was in understanding that time and space are coupdgidtscally.

Experimental data and the simple experience of working &itjuantum object on a large scale [6] [7] was
essential in taking the 1932 arguments of Dirac, which core@more than time, but how relativity should enter into
guantum mechanics to generate particle properties. THagoat the base of these arguments is whether there was
more than one space in which to apply quantum mechanics. éedpagenerate properties and a space to compute
dynamics. Why and how should two suclfdient entities exist? The argument for this division caroefconsider-
ing the very simple model of a spherical potential well agtim a field and asking the question, what is the minimum
potential required to generate a bound state to localizel@fiehat can be computed if the local interaction is at-
tractive and it has three allowed solutions which generatedale for the entities. This is the first step in defining a
primitive boson [1]. For a locally repulsive interactiorighvould describe an elementary feature with properties as-
sociated with a fermion. The scale that is generated is auneas$ uncertainty in the description of the original field.
This uncertainty is defined by a single parameiegs the scale. But in time there is also an uncertainty gestbra
that isAt = e/c. Once this point was made it was apparent there was enougtmatfion to define a space where
a particle generates its properties that is statisticalliependent from the laboratory frame. This space is cdtlied t
self-reference frame. Standard quantum field theoriesyarardical theories analogous to classical mechanics. This
new space is not the same kind of dynamical space used in miesHaut it describes the actions on a field which
generate particle properties. Momentum is not a part ofrtbig space.

Identifying the particle’s self-reference frame allows wagtum particle to generate its properties, which are
realized by measurement in the laboratory frame. The 8tati®asis of Bohr is preserved but the real properties that
Einstein wanted are generated from this basis. What wasrteeessary was a description of a particle in this new
frame of reference and that is a straight forward constouactl he relativistic energy conservation requirement will
hold in both reference frames though it will be altered by wikaallowed to be defined in each frame. Principally
mass is not defined as a separate property in the self-refefesmme but is generated in that frame so the energy
conservation is transformed.

(E - mcA)(E + mc?) = p’c® = E? = p’c® (1)

In the self-reference frame equation 1 can be factored ipimduct of two simple dispersion relatid= pc. From
these a separate spatial and time dependent second offéeemtial equations can be constructed by imposing the
disorder parameter for space and time on the particle'sapgit) and timeg(r) dependent particle descriptions [8]
[9]. A derivation of the resulting diierential equations is in the appendix. The product of thediwidual descriptions
then construct the particle’s state function in the sefémence frame. Experimentally these analytical reprediemts
were confirmed for a massive boson in the previously citeeregices. But massive bosons are exotic things, whereas
electrons and nucleons are more commonly dealt with. Onleeo$itnplest forces is electrostatics and this should be
something that is generated along with charge in the stdfeace frame for an electron.

Self-Reference Frame Representation

To generate the structural characteristics of a partickeparticle must be defined in its own frame of reference inde-
pendent of the laboratory frame. There is no analogousftramation between the two frames similar to a Galilean
transformation as the two frames are statistically indepan The simplest way to introduce the relation of the self-
reference frame to the laboratory frame is in Table | thds [froperties, characteristic and how theffati This
particle space allows the elementary fermion to generadestrostatics field. The quantization of charge can be de-
rived by considering the allowed transitions that can oémm the self-reference frame as a function of the number
of spatial dimensions in the laboratory frame. Boson chargbe weak charge and charge quantization are derived
from considering these transitions and are discussed &il deteference [9].



TABLE 1. Self-reference frame dependent features for a free unbpartitle, ref. [9]

Property | Description | Comment |
Lab. Frame R" with time R® + 1
Self-Ref. Frame C withtimeC + 1

State Function

| w(r,7) = u(r)g(r)

| defined in self-ref. frame

€

| random scale variablg  generates the self-reference framef

vy relative energy y=E/m? y>1or y<-1, real
K inverse scale [k k = mc/#, real for massive particles
we frequency we =mc?/h real
r radial variable realr >0
T time variable realt >0
n dimension r" ~ Volume
r=0 center of symmetry a random location in the lab frame
u(r) spatial function complex function, Ampju(r)| & Arg. 0
u*(Nu(r)r? density function measured for a boson
u*(ru(r) U(1) symmetry proportional to electrostatic field
Sign[n,y] field sign function (<L, y=1)or (+1, y<-1)x§
dynamics | labframeonly | boson= fermion in self-ref. frame |

angular momentum
mass, chargds & B
gravity
Lorentz trans.

lab frame
lab frame
lab frame

lab frame

not defined in self-reference frame
not defined in self-reference frame
not defined in self-reference frame

not defined in self-reference frame

The diferential equations that represent the spatial structir@sind the time dependengér) in the particle’s
self-reference frame are derived from the factored coatdimdependent energy conservation relation in equation 1
[9]. This analysis defines a particle’s locality thaffdrentiates a particle from a field. The only parameters in the
frame of reference of the particles ardrom relativity E = ymc? and« = mc/% the inverse of the Compton scale
for a particle of masan, wherec is the speed of light antlis Planck’s constant. This analysis yields twéeliential
equations one for space and one in time.

n-1 . .
u’(r) + (T + {1 —iyDu'(r) —ik®yu(r) =0 (2)
The two solutions in 3-dimensions spatial equations arergia equation 3 and 4. These two solutions represent a
boson and fermion which are parametrized in terms of th&itive energyy| > 1 and the scale of the particle’s core
€ = 1/k.

Unoson(1; 7, ) = AT TU[L =i, 2, (1 + iy)wr] 3

Ufermion(r; g K) = Be_KrlFl[l - |% 2’ (1 + W)Kr] (4)
The solution for the fermion function depends on the confilgpergeometric functiogiF1 and the boson is described
by the solution containing thg function. The solutions in the self-reference frame forférenion function have both
the characteristics of a local center of symmetry and theevweharacteristics of a field over all space. The wave-
particle duality is built into the description from the beging in the self-reference frame. For relativity, both alec
and clock are required and these spatial solutions supelgditicle’s scale.



Time Dependence Salf-Reference Frame

The time dependent equation for the state function whiclsis derived from equation 1, has a very simple solution
set.

92 .09 .
6—3 +(we T |w)6—g Fiwwg=0 ()
For the equation withp = (y — 1)w. the positive terms there are two solutions whegds the Compton frequency,

see Table 1.

g:(7) = AeT1(y = Dwet | ggwer (6)

For the equation with negative terms there are also twoisolsit

g_(7) = Ad(y ~ Dwet | ggwer (7)

These solutions supply the particles internal clock withttme dependence due to the particles relative kinetigggner
The time and distance scales are coupled through the garself-energy. Note that the time dependent version of
these solution for a massless entity have no decay modesareddre no virtual existence [9].

The spatial and time dependent equations of a particle ingligeference frame supply both the clock and ruler
required for the laboratory frame and essential for speeiativity. The time dependent relation’s solution onlysha
meaning for both solutions if > 0. The decaying solution has to reappear elsewhere, angblaliem involves
the relative stability of both the fermion and boson stalagiamics in the self-reference frame is a study in relative
stability as particles can transform into more stable forAsthe elementary boson and fermion are the only two
things that populate the self-reference frame the dynaanetimited to the relative stability for these two forms.

The representation for the elementary massive fermion asdrballows their antiparticle to be represented
as their complex conjugate. This is equivalent of allowintp be replaced by-y and representing the negative
energy solutions. The spatial density distribution of thetiple is supplied by the produat:(r)u(r)r?, represents a
measurable property that can be detected.

Electrostatics

How accurate is Coulomb’s law? After 231 years the answehab question should be known. The existence of
guantum electrodynamics is a detail which suggests thako@udis law is an approximation. The main static charac-
teristics of an elementary fermion are mass and charge. Masssents a scale measure of the fermion and it appears
that charge results from the detailed structure of the femmivhich must merge into the electric field description
of Maxwell. If Coulomb’s law is not accurate at the partisl€haracteristic scale, this is a major problem for any
understanding of nuclear structure.

The division between electrostatics and electrodynarsie®t one of semantics, it is a major division of two
very distinctly diferent mechanisms that result in measurable forces. Etheteanics is understood a little better than
electrostatics in terms of its foundation. There is a sdjmarghat Michael Faraday pointed out in the mid nineteenth
century and has really not been explained any better siratdithe [10]. The current way to describe electrostatics
is to invoke a virtual photon [11]. This appears to be an uessary complication to describe a contact interaction.
Attempts to get around this problem with two photon exchdiigé also have not captured the physics required to
generate the electrostatic field.

To explore the idea of what produces the static electric flakluseful to plot the product function for a stable
fermion in the self-reference framgy, which reduces tar*(r)u(r) that is time independent. For the fermion it was
noticed that this function away from the center of symmeatisfof as 1/r2. This is identical to the fall f§ in the
static electric field in the laboratory frame for an electrSmce charge does not alter the curvature of the laboratory
frame and the field that it generated might be associatedttireith the productu*(r)u(r) where its symmetry is
determined from the restriction to a radial dependence.

The spatial portion of the fermion state function in thremelinsions that will be used to generate the electric
field and potential is:

u(r) = Ae ™M 1F1[1 — iy, 2, (1 + iy)«r] (8)
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FIGURE 1. Electric Field Comparison: The 1/r? fall off in the fermion, u*u function at large distances is characteristic of
the electric field from a point charge. Wheree, epsilon, is inversely proportional to mass withe = 7/mc and for the electron
it is approximately 3.86 x 1071 meters.

The trial function describing the spatial dependence otthetrostatic electric field is:

e

E(r) =
") 4rreq

ur(Nu(r) T )

which in the limit asr — oo the normalization constant can be computed with a field dégere is 1r? using the

series expansion fafF; at large arguments [14], wheFds the gamma function.

AA* 1 1

lim AA"e 2T F(r)1Fi(r) = _ . « - 10
rose0 1F2(1F3 (1) T — iy]T[1 + iy](1 + y2)e 2 AcTan),2 ~ 12~ 2 (10)

This allows settingh* A equal to the denominatd¥1 — iy]I1 + iy](1 + y?)e 2 AcTa(2 to normalize the result to a

simple ¥/r? in equation 10 then the electric field and potential are deitezd.

an:firu—nﬂﬂAJﬂa+y%@bNﬂmmﬁeﬂuFﬂ1—w241+qumﬂl+w241—WMQ? (11)
TT€EQ

r T
v(r) = f ur(ru(rydr’ = f E(r') edr’ (12)

The validity of v(r) potential can be explored by using the function in commutire matrix elements between
states of the hydrogen atom when th& point charge electrostatic potential is subtracted. Thieknce in the
potentials will be represented ¥ in the case of atomic hydrogen.

ov(r) = - ¢

1
e |7 V) (13)
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FIGURE 2. Electric Field u;(r,y)us(r, ) comparison as a function of relative energyy. The contraction of the field occurs
with increasing y.

This is not a small potential change because of the removhed§ingularity at the origin, but it is restricted to a
small volume which lessens its impact on atomic propertigsibt on nuclear properties.

Nuclear Potentials

To improve the relevance of the calculation because of thegetradius problem [13] requires defining a potential for
the nuclear charges in termsuf) for the charged nucleon. Toftérentiate between theftBrent potential sources:
electron, proton and muon the functiogr), up(r) andu,(r) are used respectively. The potential then becomes:

r
vi(r) :f U (ru(r)dr” where i =e, p, or u (14)
Then the error potential for hydrogen like atom, proton-maopositronium can be computed the particle’s potential.
3
Vici(r) = 7~ 1w() = vi(1)} (15)
TT€Y

These error potentials are useful in evaluating the madaitf the contribution for correcting the point charge
nuclear potentials.

Charge Density

The charge distribution can also be defined from the elefitlid. A trial definition for the electric field&E(r) is:
e K * N e s N~
E(r) = -—u'(r)g" (mu(r)g(m)r = —u(ru(r)r (16)
4rreq 4rreq
Using Gauss’s law the charge density can be computed.

veg =20 (17)

€o

0
P = 73 5 U (€U ) (18)
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FIGURE 3. The 1/r fall off in the fermion function at large scale shows the same behavias that of a point charge. At short
distances the function goes to a terminal finite value. Thismplies that the electrostatic interaction is a contact inteaction
between charges over their volume. The contact is that of theombined fields that determine the local energy density and
its resulting action on the interacting particles center ofsymmetry producing a net force.

e 2 ,
o(r,y) = —{=uu+u"u+uu} (19)
A r

The charge density is shown in Figure 4. Having the chargétemdlectric field directly generated from the particle’s
density function, which is distributed over spaces, elatés the need for virtual photon as there can be a contact
interaction between neighboring fields removing the needfdntermediate agent.

The charge density is localize to a small volume unlike theigla density,u(r)*u(r)r?, which can be spread
over all space. The total charge can be examined by electnoetia scattering, but the small volume over which it is
defined limits the information that can be acquired in angleexperiment. The errors in high energy measurements
will be large compared to the resolution required to map th&cture. It is using low energy experiments that will
yield the more accurate data about the fermion structure.

First Order Corrections & Data

Even though the proposed particle’s derived electric fieldaves a singularity in the self-reference frame for charge
the bulk of the charge is limited to a small volume. The mostiaate method to determine the impact of the distributed
charge to the atomic hydrogen energy levels is to solve thediinger equation with the correct potential by replgcin
the 1/r potential with one dependent on the fermion state functi@r),as it determine¥(r) from equation 12.

hz 2 —
5=V + V()¢ = E¢ (20)

It is not apparent how to reduce this equation to an anahgaation. Because the changes in potential are localized
about the origin on a scale much less than that of the Bohusdtlis easier to compute the first order perturbation
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FIGURE 4. Charge Density: The charge density plotted ag(r)r? as computed in equation 19. The radial coordinate is in
units of e wheree = 1/kandy = 1.

correction from the Schrodinger equation using the stathdeoton-electron point charge electrostatic approxiomat
—€2/4ne,r as the reference state.

It is possible to test the perturbation potential with dastanly for the hydrogen atom, but also with hydrogen
like single electron ions wheiZ > 1. The first order perturbation correctiafy/, of a quantized energy levdlE,, is
the integral.

6= [ dnonovrar (21)
0

WhereE] ~ —2Z2/n? with n in this relation being the principal quantum number (1,2), | being the angular
momentum quantum numbers (0,1,2, . . ), which are the eig@esasing a strict Ir potential.

En = E} + 6En + Z{ Second Order Terms} (22)

The integrals that are going to show the greatest valuedase tthat have the maximum as» 0 which are thes
states and in particular tH& state. Computation of the first order correction of #fssstate is shown in Table 1l where
y=1

For an experimental reference one electron atoms and ioasured ionization energies will be used rather
than dealing with complex problem of dynamic polarizapilit a radiative transition that will féect the measured
difference between energy levels.

1
En = ES + 6y — EQEZ + Z{ Second Order Terms ) (23)

The dynamic polarization term that is schematically ineldiéh equation 23 asaE?/2 will try to cancel the first
order correctionsEy in spectroscopic measurements but not in electron saagtexperiments measuring ionization
energies where the polarization is strongly suppressed.



TABLE 2. Matrix elements for hydrogen
writh the corrected potential for 6V(r) ~
[ uudr’ — 1/r.10°%* joules = .624x 10°° eV

Matrix computed joules

Element x 10721
<1S| 6V |1S > 1.137269
<2S| 6V |25 > 1421634
<3S| 6V |3S> 04212271
<4S| 6V |4S > .01777055

<2P| 6V |2P > | -.000004361675
<3P| 6V |3P> | -.000001399561
<4P| ¢V |4P > | -.000000606233¢

<1S| 6V |25 > 4020936
<1S| 6V | 2P > .001247904

| <2S| 6V [2P> | .0004432168 |

<2S| 6V |3S > 07738417
<2S| 6V |3P> | .0002626220
<2S| 6V |3D > | -.0000001834999

<2P| 6V |3S > .0002413868
<2P]| ¢V |3P> | -.000002442469
< 2P| ¢V | 3D > | -.0000003872372

Atomic lonization Energies

The largest correction is for thiS state that is on the order of 10eV, which is a small correction, but easily mea-
sured. The question becomes how do you measure a properfyanficle imposed from its self-reference frame and
measured in the laboratory frame? In the laboratory fraraestectron is taken as a point charge and it is accurately
modeled for spectroscopic experiments for radiative itimms. A radiation field finds an electron through the elec-
tron’s charge. The electron’s charge is distributed ovesrapact volume with spherical symmetry so that the total
charge can be taken as acting at its center of symmetry. fidnerehe point charge description can be used as a
description as long as the electromagnetic field does ndepttoe core of the fermion. This probing is inhibited by
the dynamic reaction of electrons to the field. A radiativeliaction suppresses details of the structural charatiteri

of the fermion and its first ordefE,, interaction with the proton. The electron and proton makargle two body
problem and a radiation field would alter that quiescenedbgtpolarizing the atom [16]. In order to detect the first
order corrections due to the fermion structure a less imeasichnique is required and that is to use another electron
to scatter the bound electron out of th® state and measure the ionization energy. A 14 eV electroroigng at

~ .01c will have an interaction time of 10717 seconds, which would be about 1% of the time required for tjuive
alent radiative transition. The incident electron will ibethe atom. This will lead to extractirdd,o as the diference
between the computed 1S level-eRyberg x {reduced mass correction} Z?/n? and the measured ionization energy
as shown in Table 3

lonization energy determination is an electrostatic sctt) that triggers the removal of the finks electron.
lonization is not a process that requires the generationmicion to liberate an electron. The experimental data
is collected by a radiation-less scattering process. Tiseme large scale dynamic electric field polarizing the atom
prior to ionization except from the incident electron. Thaénh that was made about electrostatic interaction being a
contact interaction dierentiates the ionization data from the spectroscopic tthatiarequires and external dynamic
field that will polarize the atom. Polarizability only becemimportant when there is a distribution of both positive
and negative charges spread over a volume. In Table 3 theffitst correction computed for tH& state is slightly
less than the measured ionization energy of hydrogen B%. This gives some support to the idea that the potential
is not a singular & potential in the vicinity of the electron’s core.



TABLE 3. Comparison of the computed first order correction §E;q to the dif-
ference between hydrogen 1S state ionization energy and tetandard 1S level.
The dfect of the additional neutron in deuterium reduces the mease first
order correction to the 1S state significantly. Experimental data ref. [15].

Computed 1S| Measured Computed exp/ 6Eio

Isotope EEO Correction 0E1o
x10%Yjoules | x102Youles | x10~Yjoules %
H 217868640 1.12447 1.137269 99%
’H 217868640 .985 1.137269 87%
Relativistic Effects

The first order energy change of the& state dependent o, the mean kinetic electron energy can be estimated
by the Virial theorem from the energy of the stateTas= .5|V| whereV is the depth of its potential well. This
would pushy — 1.00001 and yield a very small increase in the computeg of .0000403x 10-?*joules. These
relativistic corrections for the electron are small u@tibecomes much larger. As the electrostatic interaction is a
contact interaction, there is no inhibition about inteiragtvith a fraction charge components.

Deuterium

The measured correction of the ionization energy for dauteis very diferent from the proton. The correction is
reduced by 14% from the proton’s value 285x 10-2*joules, which may indicate a very active three-body interaction
between the proton-neutron-electronif the experimerattl & accurate. This isfiérent than a single proton and may
indicate a contribution from the active short-range catieh data found for neutron-proton pair [17]. The shortga
nuclear correlation activity is on a time scale much shdttan 107 seconds, which may contribute to the increased
binding of the 1S electron to the deuterium nucleus as compared to hydrodas.ificreased binding cannot be
attributed to a relativisticféect.

1S Corrections for Z > 1

The corrections to th&S state that is extracted through the ionization energy aszesting for two reasons. First it

will be the largest correction to the energy eigenvalue bsedhis state has the greatest overlap at the nucleus and
secondly the nuclear charge can be varied by just going upethiedic table. Schematically the Schrodinger equation
can be written in a charge dependent form as shown in equ2diowhereZ is the net nuclear charge.

H@15(2) = E@)as(2) (24)
The 1Ssolutiony1s(Z) can actually be made to represent a product of a set of smgleon-charge interactions.

Yis(Z) ~e ¥ =e"xe" xe" ... Ztimes (25)

Where the lumped first order energy correction is:

6E(Z) =< y1s(2)I6VIyas(Z) > (26)

This lumped solution assumes the nucleus is a single poamgehwhich is a poor assumption on the time scale
that would dfectsE;o. The solution can be altered to reflect the individual chaged couplings by factoring. This is
closer to the physical reality required to understand thedaanr ground state which is coupled to a singkeelectron.
The ground state dynamics of each nuclear charge must bargecfor in the electron’s energy. Dynamiteets in
and between the nucleons cannot be ignored because thaibotion may not average to zero. The nucleus cannot
be viewed as identical particles because their dynamitarditiates the individual interactions with the electron.

Writing out the matrix element faf > 1 shows how the first order corrections end up as a sum of shapair-
wise electron-nucleon interactions rather than a bulk@aion with the entire nuclear charge. Thifeientiation is
forced because all protons are no longer identical as thiépeiransforming because of their short-range corretetio
The first order energy corrections is then a sum over the iithalél nuclear charges.



TABLE 4. Computed first order energy correction
to the 1S state due to the electron charge radius. For
Z greater than 1 the correction to the 1S state show
a weakening bond where as the experimental data
shows a strengthening of the bond. The Scladinger
equation solution treats a simple lumped potential
only dependent upZ. Whereas, the binding appears
to be a set of individual couplings to the charges of
the separate nucleons. Experimental data from ref.

[15].
experimental | computed
Z | elements | difference O0E10(2)
joules10?' | joules 102
1 H 1.12447 1.137269
’H .985 1.137269
| 2] “He | -4.2 | 17.81 |
3| SLi & “Li -3.5 88.19
4 °Be -12.1 2725
5|1%B& 1B -12.5 650.4

=3 Z Vi =3 2(1 - f ) (27)
Z : | 7z i ri . i i i
OEn (i) =< ¢iloVilgi > (28)
Where:
— 1 1
OEn =< ¢12...dzI0VIp1p2 . .. ¢ > = Z Z < ¢iloVilgi > = > Z5En|(i) (29)

This is a very dfferent result than taking a single charge Z and computing tadiiceer corrections. This sum will
have terms that are much reduced from a lumped calculatiperinentally the numbers are found in Table 4 and
have more in common with the single proton corrections ofagiqu 29 rather than treating the nucleus as a lumped
Z charge found in column 4 of Table 4. The minimum features thast be added to the potential terms in the
calculations are the nuclear charge distribution and tterjzation of that charge.

There is a great deal of physics buried in trying to understhe deviations of the ionization energies from the
1Sstate as a function of nuclear charge, particularly the tiegaalue of the corrections &increases beyond 1.

Discussion

To test the deduction that an elementary fermion producesemtrostatic fieldy*u = |E| rather than a simple/t?
field imposes two constraints on time and space. For an efestiield the &ects in space are on a scale~ofl013
meters or less. The constraint on time to measure fileeterequires a time scale which does not disturb the bound
system by polarizing the atom or ion. This eliminates usiagjative transitions for examining a bound state such
as the hydrogen atom. The ability of a quiescent bound eleciate to be measurably polarized by nuclear charge
dynamics appears to be easily detected and surprisingjg.lar

There are two dferent categories of nuclei being examined: the proton drattedr nucleons which have more
than one component. The ionization energyadence between hydrogen and deuterium is a major pieceabdadhe
participation of the electron in transient nuclear dynamidis diference is not small and considering the minuscule
volumetric overlap, the change in ionization energy fortdgum is large. No simple corrections have been found to
account for this shift that increased the binding.



The question of how to reductE;¢(2) to increase the binding energy of the state looks to be agntppf
the nucleus. There is a small 1%ffdrence of 232x 1023joules for the 1S state of the hydrogen atom between
the computed first order correction and the measured datdfdct for deuterium is much greater with a 18%
reduction from experiment to computation. There is no clkdnghe net charge between the two case but there is a
change in the available electrostatic charge that can teipetl in the nucleus. For the three elements above helium
the contributions become negative. It appears that duhieghort range correlation periods within the nucleus very
strong local fields are generated that produces a polariztdrm d@ecting thelSeIectron:—anEﬁ/Z, which is capable
of dominating the first order correctidi,o. Where botte, anda,, are features of the nuclear short range correlation
process and, is proportional to the active nuclear volume. Thiteet becomes more predominant as the nucleon
countincreases.

We have tried to avoid the assumptions and problems of cerisglradiative transitions studied in quantum
electrodynamics. The radiative transition is a much morefex process than the threshold ionization experiment.
By introducing a diferent potential any future perturbation calculation wilvk to propagate this change through
to computing the radiative corrections. Its is not easy tovghat will result for the corrections, but they should be
significant.

Appendix

Differential Equations in Self-Reference Frame

Starting in the self-reference frame with the conservatioenergy relation:

E? = p’c® = (+E)(+E) = (po)(pc) (30)

Factoring the two equations and replacing terms with thespeiated operators twofférential equations result with
a dependence in time and space.

+ircVu(x) = Eu(x) (31)

0
Tcikg(r) = Fhog(r) = m% (32)
The scale of uncertainty in spaee enters the spatial equation as a randdiset that is greater than zero. In the

spatial diferential equation becomes a second ordéedintial equation.

U(X) — U(X + €) (33)

U(X + €) = U(X) + e (X) (34)
VUX + €) = VU(X) + eAu(x) (35)
oo - 2 () (36)

a2u(r) n- 1ou(r) _

(AUl = 52 rooor

u(r) + n%lu’(r) 37)

u(r) + (”%1 + k{1 - iy)U () — i2yu(r) = 0 (38)



Time Dependence

Similarly in the first order time dependent equation the utadety in time enters adr = ¢/c.

ot + A1) = g(r) + Arag—(:) + .. (39)
0g9(r + At) _ dg(7) 8%g(7)
o = 5 + At 5.2 + .. (40)
, ag(r), _ dg(x) , , 9%g(r)
+iw(g(r) + At o ) = o + At 502 (42)
@+( —i)@—i =0 (42)
572 we F lw ot Flwweg =
Numerical Integration
The properties ofF1[a, b, r] can be expressed in the following terms:
_ L az (a7 (@n2"
1Fi[ab,7 =1+ b + 02 +(b)nn! + ... (43)
where @), =1 and:
@n=a(a+1l)@+2)...(a+n-1) 44)

In the case of three dimensions whetR anda = 1 — iy with z = (1 + iy)«r the series can be simplified.

2 7
eZ=1+z+§+§+.... (45)
: i i Z
1F1[1 —iy,2,7 = 1 + e@@0)z 4 gri@ant)+atanty/ 2))5 +..... (46)

Where the series has form of the seriesefawith eachn term being multiplied by,

Or = & 2 47)

Wheny — 1 the result is just a rotated version of #feseries. The series fafF1 looks like it can be treated as inner
products of two infinitely long vectors where the modulatafrthe base vector represented by the serieefos
multiplied by a vector generated frogg.

Care has to be taken witli; function in numerical calculation [18]. The series expansifor small and large
arguments of theF; functions from ref. [14] were computed to a minimum of 12 gl@cecision. The transition point
Iz = 25v2 was selected between the positive and negative powesserze TheT functions were expanded in a
power series of eight terms using the padlyunctions at the fixed point 4 i. The potential dterences are computed
by integration in two stages froex 5x 10’ taken as infinity tax 10* then continuing to a point belowx 10* where
the value is required. The upper integral is done inB) steps. The integrals for the matrix elements are performed
from 0 toex 10%in 5x 10’ steps. The bulk of the contributions to the matrix elemergsaaradial distances less than
10e where the potential deviates most from Coulomb’s law.

AcknowledgmentsDoug Higinbotham, Glenn Westphal and Prof. Patrick Cabiltheir discussion and Eric Gorton.



[1]

(2]
[3]
[4]
[5]

[6]
[7]
(8]
[9]
[10]
[11]
[12]

[13]
[14]

[15]
[16]
[17]

[18]
[19]

REFERENCES

J.P. Wallace, Proton in SRF niobium 205-33SSTIN 10 AIP Conf. Proc. vol. 1352 ed. G. Myneni et al.,
AIP, Melville NY, 2011)

R. V. Noorden, Interdisciplinary Research by the NunshNeature 525306 (2015)

T. Kalaydzhyan, Testing General Relativity on Accetera,arXiv:1506.01963v3 [physics.gen-ph] (2015)
P.A.M. Dirac, Relativistic Quantum Mechanidoc. Roy. Soc. A 136, 453-461 (1932)

W. Pauli & V. WeisskopfUDber die quantisierrung der skalaren relativistischeremgleichungHelv. Phys.
Acta 7, 709-731 (1934)

J.P. Wallace, Electrodynamics in Iron and Steel, pdpxiv.orgabg0901.1631 arXiv:0901.1631 (2009)
J.P. Wallace, Spintronics enters the Iron Age, J. of Nde&1(6) 67-71 (2009)

J.P. Wallace & M.J. Wallace, Relativistic longitudirsgdin wave httpyvixra.orgabg1405.0015%iXra 1405.
(2014)

J.P. Wallace & M.J. Wallac&he Principles of Matter amending quantummechanics ( Casting Analysis Corp.
Weyers Cave VA 2014)

M. Faraday,The Forces of Matter, ( reprint by Dover Press, NY for a series of lecture given28860,
2010)

R. FeynmanTheory of Fundamental Processes ( W.A. Benjamin NYC 1962)

J. Arrington, Coulomb correction in the extraction bétproton radius]. of Physics G 40, 115003 (2013)
C.E. Carlson, The proton charge radius puzzle, Progl.NRhys.8259-77 (2015)

L. J. Slater , Confluent Hypergeometric Functionklahdbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, eds. M. Abramowitz & I.A. Stegun, 503-536, Dept. of Comneg\d/ash.
DC 1968)

R. Lide (ed.)CRC Handbook of Chem. and Physics 84th edition ( CRC Press, Boca Raton Fl 2003)

J.C. Baggesen & L.B. Masden, Polarizatioffieets in attosecond photoelectron spectrosc®®l, 104,
043602 (2010)

J. Arrington, W.D. Higinbotham, G. Rosner & M. Sargsidtard probes of short-range nucleon-nucleon
correlationsProg. in Particle & Nucl. Phys. 67, # 4 898-938 (2012)

J. PearsoiComputation of Hypergeometric Functions, Masters Thesis Oxford Univ. (2009)

J.P. Wallace, Cold Energy, irscience and Technology of Ingot Niboium for Superconducting Radio Fre-
guency Applicationsed. G. Myneni, AIP ConfVol 1697, pp 030004-1-8, AIP Meville NY 2015.



History

After completing this paper it was realized this is not thstfirme this partic-
ular problem was seen. At the end of the 1966 academic yearsi&véd work-
ing in the Columbia Radiation Laboratory for a group run byKBsch. At this
time I.I. Rabi was teaching his last course and retiring. @vdns was moving to
Berkeley and in Towen’s laboratory room P. Kusch and P. Calgte changing
course from the normal spectroscopic measurement and bgaeniraents that
P. Kusch was involved with since 1938 to start doing ion@atnd dissociation
measurements. These were techniques he had learned asraliessistant at the
University of Minnesota in the years 1935-1937. The precisadiative transition
measurement to determine the anomalous magnetic momem electron and
other deviations in transition spectra were at that timg anklyzed by using the
tools of quantum electrodynamics and Prof. Kusch was uncdatfle with this
type of analysis. His preferred analysis technique whiddwsclosed form solu-
tions with the minimum of assumptions that could be expenitaiéy constructed
and then the results could be compared. Unfortunatelytigalevents intervened.
The student riots in the spring of 1968 started a series aftevbat led P. Kusch
into the administration of the university. A number of keypermental physicists
also departed at this time. Then after a few years of admaigt duties he moved
to Texas and the ionization research was never restarted.

| suspect that P. Kusch was well aware of the unexplairfé&gebin the ion-
ization energy for 1S hydrogen and this large discrepancy/ved the subject of
much theoretical interest. However, as a student aftedimgjlcomponents for
the low energy electron gun to be used for the ionization wonlas urged to
try a standard quantum mechanical analysis on the ionizatioblem because it
should yield some interesting results without having t@rew the use of higher
order perturbation analysis required for quantum elegimachics. From the va-
riety of their previous work with the lithium isotopes onetbkir aims was to
gain more information about the nucleus and its active piatsn A cleaner and
simply experimental and theoretical technique were whey there looking for
in obtaining data about the nucleus. The path to this end bdabgk even fur-
ther in time to 1932-34 where quantum mechanics failed torjparate a general
relativistic basis so the electron’s potential could beagated. In both instances
political forces swamped the technicéicets.
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(QUESTIONS THAT GET ANSWERED

WHAT 1S THE SOURCE OF INERTIA?
WHY IS SUPERPOSITION ALLOWED FOR FIELDS?
WHY ARE THERE FERMIONS AND BOSONS?

WHY ARE THERE BOTH MASSIVE AND MASSLESS
ENTITIES?

WHY IS THE MUON NOT JUST A HEAVY ELECTRON?
WHY ARE NEUTRINOS MASSLESS?
WHY 1s TAU PARTICLE NEUTRAL?

WHY IS CHARGE CONNECTED TO PARITY FOR JUST THE
3-D MASSIVE BOSON?

WHY ARE THERE NO AXIONS?

WHY 1S THERE NO VACUUM ENERGY?
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