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The nucleons with their components and force fields are a greater challenge for quantum
mechanics than the hydrogen atom that had provided deep cover to hide the defects both
in quantum mechanics and relativity (Wallace and Wallace, 2024c). Once a correction
to special relativity was made allowing = to take on values less than one the hydrogen
ground state could be accurately computed providing a method to deal with the nucleons.
A result was to discover why the neutron and proton are stable and have similar masses.?
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I. THE DATA

Low energy nucleon properties reveal the character of
the proton’s and neutron’s internal structure. The pro-
ton shows no electric dipole moment or induced dipole
moment in very tight limits (Harrison et al., 1969). The
proton’s spherically symmetric charge distribution is not
easily perturbed implying that the proton’s components
maintain spherical symmetry as an intrinsic property.
This basic symmetry supports the great stability of a
structure of both the electrostatic field and a strong force.

The mass corrected magnetic moment of the proton
compared to the electron gives a rough measure of the
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charge distribution’s scale verses its compact core estab-
lishing its mass. The proton’s charge distribution is rela-
tively broad as compared to its more compact core. The
proton’s first excitation is a pion shedding the excess en-
ergy from a collision so that the proton itself remains
stable. The pion’s self-energy maybe close to the effec-
tive binding energy of the proton’s components. Unlike
the electron in electron-electron scattering there are no
basic excitation of the electron, it will only shed parti-
cle and anti-particle pairs indicating no substructure to
replicate. The proton’s magnetic moment and the pion
production indicate the proton is constructed of more
basic components restricted to spherical symmetry.

The next two properties by themselves tells us little
other than the weak transition preserves the long range
electrostatic field. Why the mass of the proton and neu-
tron are close in value has to be discovered?

e No Electric Dipole Moment for Proton and Neutron

e Proton verses Electron Magnetic Moment

e 7 Pion Mass

e Mass of the Proton and Neutron similar

o Weak Transition Preserves Long Range Fields

A consistent description of the above properties is not
provided for by the Standard Model of particle physics
that does not take into account that the 7 of special
relativity can take on values less than one when binding

occurs either in an atom, or nucleus, or within a nucleon

(Wallace and Wallace, 2024a).

Il. THE TOOLS

Relativistic conservation of energy provides a tool to
attack the problem of proton stability and neutron insta-
bility. When relativistic energy conservation is dealt with



Table I The pion appears to represent excitation en-
ergy of the proton that cannot be contained and ex-
ceeds the energy binding the components.

Bound Particle |Rest Mass in 7| comment
atomic

Electron bound 19997339 hydrogen

Nuclear binding 9915 maximum
Electron bound .88197 Z — o0

first Proton pion mass
excitation 874 added

properly it provides the mechanism to generate a private
space for individual particles/fields. These private spaces
are called self-reference frames that are statistically in-
dependent from the laboratory frame. This statistical
independence comes with a price of lost volume in the
laboratory frame that is the basis of gravity (Wallace
and Wallace, 2024a).

The field solutions in the self-reference frame in three
dimensions yield valid solutions for the elementary mas-
sive boson and fermion, see the Appendix for the spatial
differential wave equation in the self-reference and its so-
lutions. These solutions generate the four elementary
particles and fields: electron/positron, photon, electron
neutrino, and the W*Z°. The 8 lower dimensional com-
ponents solutions along with their anti-particles are used
to assemble the rest of the baryons, leptons, and mesons.
These lower dimensional components can assemble only
if they have a natural attraction to produce the remain-
ing baryons, mesons, and leptons. This turns out to be
a simple computation.

The notion that gauge bosons are required for bind-
ing will be shown to be unnecessary (Wallace and Wal-
lace, 2025). Only contact interactions between individ-
ual particles and fields are required for binding. The
fractional quantization of charge were found associated
with the massive fermion components for the nucleons
in lower dimensions (Wallace and Wallace, 2014). Con-
versely the electrostatic field in the nucleons is generated
by the lower dimensional boson components, whereas the
electron with its massive fermion field generates its neg-
ative charge distribution. This may seem contradictory
except that these one and two dimensional components
are not associated with a spin as that is a property of
the entire nucleon in three dimensions in the laboratory
frame. The self-reference frame allows some major flexi-
bility in the components’ associated properties.

I1l. WEAK HISTORY

Quantum mechanics’ written history is one with a few
solutions that are almost perfect. The early pioneers
knew of problems with the subject, but failed in their
repairs (Dirac, 1932) (Gamow, 1966) (Pais, 1986). Quan-
tum mechanics suffered from a number of mathematical
difficulties imposed on it by theorists: use of the contin-
uum, validating singularities (Taylor, 2000), dealing with
symmetries as starting point not an end point, using the
Klein-Gordon equation as a model, and restricting anal-
ysis to a simple all encompassing vector space. This col-
lections of mistakes ensured the Standard Model of high
energy physics would be misleading (Weinberg, 1995).

The concept of the quark with a fractional charge tied
to lower dimensional spaces was not a problem. What
was a problem was attaching spin and color with bond-
ing gluons making the quarks dynamically independent
entities. The quarks were treated as individual fermions
obeying Fermi-Dirac statistics. This was an over reach
because the lower dimensional entities were not occupy-
ing the same spaces and did not require an additional
set of quantum number so as not to violate Fermi-Dirac
statistics. Assigning spin to quarks was a major flaw
as spin only appears in the laboratory frame for en-
tire entities not for components (Wallace and Wallace,
2019). Fermi-Dirac statistics do not apply to the indi-
vidual lower dimensional components.

The method of working backwards from decay product
as is the practice with the Standard Model has a fault.
Many more decay channel are available when relativity is
incorporated into the free particle laboratory frame wave
equation. Unlike, the application of the Schrédinger or
Dirac equation for scattering events where only a single
channel is considered (Wallace and Wallace, 2025).

Fractional charge quantization was derived from the
massive fermion wave function, us(r, ,¢; &, 7y, n) that was
dependent only on the dimension, n (Wallace and Wal-
lace, 2014). However, the nucleon fields that generate the
electrostatic field are the massless and massive boson so-
lutions in one and two dimensions. The question is why
should the charge quantization computed for the mas-
sive fermion components be valid for a collection of bo-
son components? These lower dimensional components
are not yet independent bosons or fermions. That only
occurs for entire entities in the laboratory frame where
spin is realized as a stabilizing force.

The massless boson collection produces the 1/r? elec-
trostatic field represented by the lower case solutions,
up(r, k,n,7) and the massive boson collection produces
the charge density when Gauss’s law is applied. The key
finding was the neutron’s charge distribution that is both
positive and negative and cancels to zero, while being in-
dependent of any scale variations between components.
The invariant net zero charge is required so the neutron
can bind as its scale increases and its mass is reduced.
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Figure 1 Neutron charge density is computed from the
divergence of the product of two one dimensional and
a single two dimensional massive boson solution times
their complex conjugates of equation 14.

Where (7, 0) are the coordinates of uy(r,6,t; k,n,v) on
the complex plane and the detailed functions are found
in the appendix. The quantization of charge :i:% for di-
mension 1, :l:% for dimension 2, and +1 in three dimen-
sions was independent both of mass through the inverse
scale, k, and 7 of special relativity (Wallace and Wal-
lace, 2014). An energy change from an interaction ap-
pears as a change in vy with the particle’s transverse re-
sponse reflected in the rotation of angular structure on
the complex plane of the particle, §6. The wave function,
uy(r,0,t; k,n,v), allows the 0v/00 to be computed that
is proportional to charge that is only dependent on the
dimension and independent of mass (Wallace and Wal-
lace, 2014).

A defect in the standard model was the lack of a
mechanism to generate the electrostatic field. Fractional
charges by themselves require that they be stably com-
bined so no dipole momement exists or can be induced.
These lower dimensional components, fermion and boson
types, together generate the electrostatic fields of both
the proton and neutron with a single center of spherical
Symmetry.

These field density solutions are not point entities as
used by the Standard Model (Taylor, 2000). There are 8
lower dimensional components, half are massive and the
other half massless. The lower dimensional components
are not lines and surfaces rather density functions that

are defined in a lower dimensional space and only when
they combine are they realized as three dimensional enti-
ties. It is the details of their combinations that generate
the baryons, leptons, and mesons (Wallace and Wallace,
2017).

IV. BINDING

The role special relativity plays in bound structures
can be exploited to define how lower dimensional com-
ponents bind to form the two principal nucleons without
shuttling colored gauge bosons. For the hydrogen ground
state the |y| of special relativity takes on a value less than
one. The closed form solution of binding that satisfies
relativistic conservation of energy for the ground state of
the hydrogen atom requires no corrections from quantum
electrodynamics if relativity is properly treated (Wallace
and Wallace, 2024b). The electron gives up some self-
energy, mass, to bind. The loss of mass is more obvi-
ous for nucleon binding. From the Compton relationship
the scale of the individual particles, (r) increases when
bound because of the loss of mass. The only requirement
for binding of two or more components is that the scale
increase with decreasing v when the components over-
lap with the same center of symmetry. This means the
components are attracting each other. It is not difficult
to compute the scale where H(r) is the wave function of
the combined components integrated over the volume to
generate the mean scale (r) that is inversely proportional
to mass, see equation 2.

7fH*rUdv

= [H* Hdv @

(r)(v,n,m)

An example of two different components with dimen-
sions, n and m, H(r) is constructed as a product of these
lower dimensional components with their own Jacobian
scale and takes a form found in equation 3.

B Ju*(r,n)u*(r, m)r" T (e, n)u(r, m)dr

a S u*(r, vy, n)u*(r,m)r*tm=2u(r, n)u(r, m)dr

(r)(y,n,m)

Binding (stable) (Myj<1 > ()y=1

(4)

No Binding (unstable) (r)y<1 < (7)}y=1

Only the spatial part of the wave functions will be used as
the time dependent products produces a constant factor
of 1 in the computation. The relative scales of the indi-
vidual components will play a major part in determining
which combinations will form stable structures. In the
self-reference frame where these lower dimensional com-
ponents are organized there are no individual dynamical



contributions as found in the laboratory frame for whole
three dimensional entities.
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Figure 2 As the mean scale (r) increases the particle
loses mass and the energy is used in bind to another
particle, using equation 2.
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Figure 3 The 3D boson, W=*Z°, shows no scale increase
with decreasing v and therefore cannot be found in a
bound structure because it will supply no energy to
the bond.

1. Limits to Binding

Limits to binding of electrons in atoms or between
nucleons have not been a fundamental concern because
the binding is relatively weak. However, the components
that assemble to form the proton and neutron seem to be
bound together with great strength. It was found that
for a single electron ion bound to a nucleus whose atomic
number is allowed to go to infinity there is a finite limit
to the binding strength. This is a limit on the bond en-
ergy that can be extracted from the particle’s self-energy.
For a single electron ion when the nuclear charge Z is al-
lowed to go to infinity, the binding is not infinite as the
electron can only sacrifice 11.8% or a v = .892 of its
self-energy to the bond. This is a strong limit that keeps
the binding process from destroying the electron. Even

though the strong force potentials are not 1/r the nuclear
components are also limited in the self-energy they can
surrender to the binding process. We are guessing this
limit for the nucleons is close to this 11.8% limit. There is
experimental data to back this up, in that the mass of the
first excitation, the neutral pion. falls close to this limit,
see Table I. The proton dwelling at the maximum limit
of binding eliminates the question of more stable states,
all other states are considered suspect or unstable. This
condition also limits the number of stable baryons.

A hint of the scaling behavior comes from the binding
range required for the proton and neutron to be stable.
This requirement is that the boson components scale to
be greater than the massive fermion components. This
produces a nucleon with a compact fermion core and a
broader boson cloud. This is not analogous to atomic
structure as these components are all density distribu-
tions sharing the same center of symmetry. From the
disparity between the proton charge radius scale ~ .87 fm
which is much larger than the scale of the nucleon from
the Compton mass a = h/me of .21 fm this is a ratio ~ 4.
This implies that boson components are the generators
of the electrostatic field and the fermion components are
main the source of the nucleon’s inertia. The massive
boson components produce a net positive electrostatic
charge for the proton and a net zero charge for the neu-
tron where that neutrality is maintained independent of
relative scale changes among the components (Wallace
and Wallace, 2020). With the source for the electrostatic
fields for the proton and neutron generated by the bo-
son components the fermion composite core will be the
source of the strong force.

The binding of the 1D and 2D components occurs natu-
rally for the massive boson and fermion components if the
scale of the boson components, 1/ky, that produce the
electrostatic field is greater than the scale of the fermion
components, 1/ky, in the case of the proton. In the case
of a collision if the proton’s charge field is compressed
it becomes unstable and produces a pion. The neutron
does not have this particular instability. This is a natural
bonding process where the components bind without glu-
ons and share the same center of symmetry to make up
a whole baryon maintaining a zero dipole moment. The
massless fermions generate the neutrinos (Wallace and
Wallace, 2020). CC is the complex conjugated of the
previous state function. To generate the anti-particle ~y
takes on negative values (Wallace and Wallace, 2024a).

Raw Field =  Tu(r, ki, ni,y) x CC
Density = ILu(r, ki, ng,7) x CC i1 )
. . . . 1'7,1'—1
Field in 3D — it rini,7) x CC 7

r2



Table II Binding Combinations. Abbreviations: mF-
massive fermion, mB-massive boson, mlB-massless
bosons, and mlF-massless fermion components. Com-
puted at v =1 and k = 1. As the ratio of x are changed
so will the propensity to bind. The 122 combination
representing the proton only binds when the scale
of the boson components is increased relative to the
scale of the massive fermion components. The mF-
mB-mlF combination represents the y and 7 leptons,
and the mlF will generate the three neutrinos. (Wal-
lace and Wallace, 2020)

Dim mF |mB|mF mF
of mB mB Note
Components mlB
3D Y| N| - - e, WZ
2D Y| N| - -
1D N| - | - -
Combination| - | - - -
1D1D Y | - mesons
2D2D Y | N mesons
1D2D Y | N mesons
1D1D2D Y| N|Y Y neutron
1D2D2D Y| N|N|Y :—; < .75| proton

A short hand expression for the product boson col-
lection Hyyy5(7, kb, 7y) & Hyges (T, K,7y) and the fermion
collection Hyy5(r,kr,7) & Hpgoo(r, fif,y). These then
go into equation 2 with the correct dimensional powers
to compute the propensity to bind. The massive compo-
nents are in bold face and the subscript defines the di-
mensions of the collection. There are no massless fermion
components for the baryons. The massless fermion com-
ponents replace the massive fermion components for the
leptons allowing the weak interaction with neutrino de-
cay products that are massless fermions.

Hyy15(r, 66,7) = {up(r, kp, 1,7) x CC}x
llb(’l"7 Kb, 27 7) x CCx (6)
{up(r, Kp, 1) x C’C}Qub(r, Kp,2) x CC

Hflli(ra HfafY) = {llf(?", K:fvlaf}/) X CC}2X
uy(r,kf,2,7) x CC

Hy795(r, kb, y) = wp(r, Kp, 1,77) x CCx
{uy(r, Ky, 2,7) x CC}*x (8)
uy (7, Ky, 1) x CC{uy(r, Ky, 2) x CC}>

HfT??(Tv ’%f’rY) = Uf(T’, "ifvlv'}/) x CCx

{llf('f', ﬁf,?,’)/) X CC}2 (9)
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Figure 4 Equation 10 is used to compute (r). The
proton will not bind its components until the ratio
Kboson /K fermion < .75. There is no such restriction on
the neutron. However, this graph is computed for a
v = .88 and only with a ratio of Kposon/F fermion < .565
is the neutron mass greater than the proton mass.
Notice how the scales closely track each other for the
neutron and proton, that implies their masses will be
close in value.

For the neutron and proton the mean scale, (r) is com-
puted as:

_ beninni r® dr
beuEani r2 dr

(Myneu (Y, ko/Kf)

_ beTQQHﬁzz r® dr
beTzszTm rt dr

(MYpro (Y, Kb /K )

The relative strength of binding is shown in Table I
for the proposed neutron and proton structure. Fig-
ure 4 reveals that in order to bind the charge distribution
must have greater scale than computed from the mass
by the Compton relation scale ~ h/mec. The static E-
field is produced by the boson components and this gives
the proton and the neutron a structure with an exter-
nal charge distribution that contributes less to its mass
and than the fermion core. It is the remaining massive
fermion components that are compact and generate the
strong force field.

V. FORCES

In the composite nucleon structure there are three sets
of components. The massless boson components combine



Table III Force sources made up from nucleon com-
posite component assemblies in the nucleons.

massive & massless|electrostatic source

neutron positive core
boson dim 1, 1,& 2 | outer charge
components is negative
proton

scale ~ .8 fm dim 1, 2, & 2 |positive cloud

massive strong force range
fermion neutron larger
dim 1, 1, & 2| long range
components
proton smaller
scale ~ .2 fm dim 1, 2, & 2| short range

to establish the 1/r2 electrostatic field. The massive bo-
son components define the charge density distribution via
Gauss’s law. Finally, the massive fermion components
are used to generate the strong force field and supply
the bulk of the inertial mass with its compact form. In
the self-reference frame where the composite components
bind and Fermi-Dirac statistics do not yet apply the bo-
son components acquire properties of the fermion compo-
nents seen in the three dimensions. In three dimensions
the massive fermion solution in the self-reference frame
generates both the electrostatic field and the charge den-
sity distribution for the electron and positron. That
is not the case for the nucleons where the boson com-
ponents, all six, are used to generate the electrostatic
field and the charge distributions for the neutrons and
protons. They capture the fermion’s component charge
quantization in order to perform this trick (Wallace and
Wallace, 2014). The nucleon’s fermion components then
generate the strong force field.

The normalize strong force fields computed from the
core fermion components are asymmetrical between the
the strength of the proton and neutron fields. The neu-
tron field is more intense and longer range as compared
to the protons field as shown in Figure 6. This is con-
sistent with having more neutrons than protons in the
heavier nuclei.

ufulri—tau,
Strong Force Field = t L 11
g JILuulrmi—tu;udr (11)
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Figure 5 v = .88, where the product in equation 11
are over the relevant massive fermion components in
one and two dimensions for the neutron n = 1,1,2

and proton n = 1,2,2. However, the sign of the field
is not determined by equation 3, as the same result
is produced for both the particle and anti-particle.
The fields for the particle and anti-particle must have
opposite signs and they are attractive. From the fact
that neither proton-proton or neutron-neutron pairs
are commonly found it is expected the the proton and
neutron fields have an opposite sign and are attractive
to each other reducing their energy.

VI. NEUTRON AND PROTON MASSES

The binding computations allows testing the value of
the small difference in nucleon masses. At a ratio of
~ .2 of the size of the massive components to the mass-
less boson component which generates the electric field,
gives the ratio of the electrostatic particle radius to the
more massive components that generate the strong force.
Using the electromagnetic radius of the proton as .78
femto meters with the core of the massive fermion com-
ponents as .156 femto meters that produces a Compton
mass fi/c(r) of ~ 2 x 1072"kg or MeV is close to the
measured mass of the proton and neutron.

The masses of the proton and neutron are in a large
part determined by the strength of the binding of their
low dimensional components. Its possible to get an es-
timate of this binding strength from the first excitation
exhibited by the nucleons. For the proton that is the cre-
ation of a neutral pion, 7°, with a mass of 139 MeV, this
is equivalent of a « for the proton’s components to bind
of ~ .86. This value for v is not far from the limiting
value found for the electrostatic potential as Z — oo of
.88 (Wallace and Wallace, 2024D).

The other extreme limit is when a nucleon in driven
into another nucleon and they are sitting on top of
each other. The binding computation in all three cases,
proton-proton, neutron-neutron, and proton-neutron can
be done by using an expanded version of equation 2. Only
in the case of the proton-proton is the computation non-
divergent but it is also non-binding. This maybe the rea-
son that proton-proton scattering produces such a rich



array of products and jets. In the other two cases (r)
is divergent and cannot be computed. In the case of
the proton-neutron being collocated in a scattering ex-
periment results in the short-range correlation explosion
(Arrington et al., 2011). In other words the initial com-
ponents come out whole. As for the case of neutron-
neutron incompatibility the stability of neutron stars is
the main result. Component binding rarely shows a sta-
ble structure. None of the two component binding sets
containing six total components produces a stable parti-
cle, rather they are used in describing mesons.

Having a dense massive core and larger distribution of
charge makes understanding charged scattering interac-
tions possible. The geometry of the self-reference frame
restricts deformations always retaining its spherical sym-
metry. When the charge radius is reduced in a collision
the proton can be driven into an unstable region where
kp/Ky > .75. The result for a threshold electron-proton
scattering is the generation of a neutral pion that repli-
cate components in the proton.

A. Deuterium Binding and Fusion

The simplest example of the strong force is found in
deuterium where there is only one stable state with the
binding driven by two nearly equal forces: strong force
and the attraction of the magnetic moments. Deuterium
gives us a measure of the strength of the strong force in-
teraction as bonding vanishes if the magnetic moments
are aligned. Because of deuterium’s large size the elec-
trostatic contribution is minimal.

In a set of experiments that drives D-D fusion that are
typically call cold fusion Swartz found the heat produc-
tion rate is enhances when the active volume is in the
presence of changing magnetic field that will perturb the
magnetic moments (Swartz, 2020). Cold fusion is nothing
special it is normal fusion occurring in condensed mat-
ter where energy has been concentrated by one of two
possible mechanisms to drive ions to fuse (Wallace and
Wallace, 2025). This experiment exhibits the role the
magnetic moment plays and the importance of the ori-
entation of the nuclei in order to fuse deuteriumn in the
keV region.

VIl. DISCUSSION

There are innumerable nuclear models based on high
energy experiments and using quantum electrodynamics
as a guide. The better guide is a structural description of
the nucleons that is consistent with the properties mea-
sured in the ground state rather than in the high energy
spectrum. The self-reference frame solutions produce an
extremely limited inventory of solutions from which to
build particles. The twelve solutions are smaller than the

large collection of quarks-gluons-axions along with their
quantization rules that make up the standard model of
particle physics. Nature is just as frugal in generating
rules as it is in producing stable particles. The net result
is that the self-reference frame solutions supply the sta-
bility condition for both the proton and neutron: their
fields and their close values of mass. This analysis found
no other stable composite massive particles.
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IX. APPENDIX

Field Solutions in Self-Reference Frame

The designation boson and fermion of the solutions are
taken from the three dimensional solutions which are the
only elementary true fermions and bosons. The massive
fermion solution in 3D represents the electron-positron.
The massless fermion solution in 3D represents the elec-
tron neutrino, v, 7,. The massive 3D boson with its
weak and variable charge is the W+ — Z° particle. Fi-
nally, the massless 3D boson is the photon (Wallace and
Wallace, 2014) (Wallace and Wallace, 2015). These four
are the only elementary three dimensional particles and
fields, as all others are composite structures made up
from lower dimensional components that do not become
true fermions or bosons until they are realized in the
laboratory frame as three dimensional entities with or
without spin.

U and F; are confluent hypergeometric functions
where A and B are constants to be determined, n is the
dimension of the state function, 7 is from special rela-
tivity, and x is the propagation coefficient. Solutions to
the Kummers equation 12 are listed for only the spatial
part of the state functions (Slater, 1968) (Mathews et al.,
2022). The massless solutions are obtained by applying
three transformations to the massive solutions: k — ik,
w — iw, and v — —i. This transformation has its origin
in how the electron neutrino is generated from the trans-
formation of the electron’s mass m — im to a complex
mass and the result is the electron neutrino. The anal-
ogy is like that of taking Adams rib, where the massless
field owe their existence to the massive components from
which they are generated. The full derivations of equa-
tion 12 along with time dependent part of the state func-
tion are found in (Wallace and Wallace, 2014) (Wallace
and Wallace, 2023).
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